
Defining Fields
This section describes how you define the fields (database fields and user-defined) you wish to use in a program.
These fields can be database fields and user-defined fields. It contains information that applies to all fields in general
and to user-defined fields in particular. The particulars of database fields are described in Database Access.

DEFINE DATA Statement
Structure of a DEFINE DATA Statement - Level Numbers
User-Defined Variables
User-Defined Constants
Initial Values (and the RESET Statement)
Redefining Fields
Arrays
Data Blocks

Please note that only the major options of the DEFINE DATA statement are discussed here. Further options are
described in the Natural Statements documentation.

DEFINE DATA Statement
The first statement in a Natural program must always be a DEFINE DATA statement. In this statement, you define
all the fields - database fields as well as user-defined variables - that are to be used in the program.

All fields to be used must be defined in the DEFINE DATA statement.

There are two ways to define the fields:

The fields can be defined within the DEFINE DATA statement itself.
The fields can be defined outside the program in a local or global data area, with the DEFINE DATA statement
referencing that data area.

If fields are used by multiple programs/routines, they should be defined in a data area outside the programs.

For a clear application structure, it is usually better to define fields in data areas outside the programs.

Data areas are created and maintained with the data area editor, which is described in your Natural User’s Guide.

In the first example below, the fields are defined within the DEFINE DATA statement of the program. In the second
example, the same fields are defined in a local data area, and the DEFINE DATA statement only contains a reference
to that data area.

1Copyright Software AG 2001

Defining FieldsDefining Fields

Example 1 - Fields Defined within a DEFINE DATA Statement:

 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 PERSONNEL-ID
 1 #VARI-A (A20)
 1 #VARI-B (N3.2)
 1 #VARI-C (I4)
 END-DEFINE
 ...

Example 2 - Fields Defined in a Separate Data Area:

Program:

 DEFINE DATA LOCAL
 USING LDA39
 END-DEFINE
 ...

Local Data Area "LDA39":

 I T L Name F Leng Index/Init/EM/Name/Comment
 - - - -------------------------------- - ---- ---------------------------------
 V 1 VIEWEMP EMPLOYEES
 2 NAME A 20
 2 FIRST-NAME A 20
 2 PERSONNEL-ID A 8
 1 #VARI-A A 20
 1 #VARI-B N 3.2
 1 #VARI-C I 4

Copyright Software AG 20012

Defining FieldsDEFINE DATA Statement

Structure of a DEFINE DATA Statement - Level Numbers
Level numbers are used within the DEFINE DATA statement to indicate the structure and grouping of the
definitions. This is relevant with:

view definitions
field groups
redefinitions

Level numbers are 1- or 2-digit numbers in the range from 01 to 99 (the leading "0" is optional).

Generally, variable definitions are on level 1.

The level numbering in view definitions, redefinitions and groups must be sequential; no level numbers may be
skipped.

Level Numbers in View Definitions

If you define a view, the specification of the view name must be on level 1, and the fields the view is comprised of
must be on level 2. (For details on view definitions, see Database Access.)

Example of Level Numbers in View Definition:

 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 BIRTH
 ...
 END-DEFINE

Level Numbers in Field Groups

The definition of groups provides a convenient way of referencing a series of consecutive fields. If you define
several fields under a common group name, you can reference the fields later in the program by specifying only the
group name instead of the names of the individual fields.

The group name must be specified on level 1, and the fields contained in the group must be one level lower.

For group names, the same naming conventions apply as for user-defined variables.

3Copyright Software AG 2001

Structure of a DEFINE DATA Statement - Level NumbersDefining Fields

Example of Level Numbers in Group:

 DEFINE DATA LOCAL
 1 #FIELDA (N2.2)
 1 #FIELDB (I4)
 1 #GROUPA
 2 #FIELDC (A20)
 2 #FIELDD (A10)
 2 #FIELDE (N3.2)
 1 #FIELDF (A2)
 ...
 END-DEFINE

In this example, the fields #FIELDC, #FIELDD and #FIELDE are defined under the common group name
#GROUPA. The other three fields are not part of the group. Note that #GROUPA only serves as a group name and is
not a field in its own right (and therefore does not have a format/length definition).

Level Numbers in Redefinitions

If you redefine a field, the REDEFINE option must be on the same level as the original field, and the fields resulting
from the redefinition must be one level lower. (For details on redefinitions, see the section Redefining Fields.)

Example of Level Numbers in Redefinition:

 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF STAFFDDM
 2 BIRTH
 2 REDEFINE BIRTH
 3 #YEAR-OF-BIRTH (N4)
 3 #MONTH-OF-BIRTH (N2)
 3 #DAY-OF-BIRTH (N2)
 1 #FIELDA (A20)
 1 REDEFINE #FIELDA
 2 #SUBFIELD1 (N5)
 2 #SUBFIELD2 (A10)
 2 #SUBFIELD3 (N5)
 ...
 END-DEFINE

In this example, the database field BIRTH is redefined as three user-defined variables, and the user-defined variable
#FIELDA is redefined as three other user-defined variables.

Copyright Software AG 20014

Defining FieldsLevel Numbers in Redefinitions

User-Defined Variables
User-defined variables are fields which you define yourself in a program. They are used to store values or
intermediate results obtained at some point in program processing for additional processing or display.

You define a user-defined variable by specifying its name and its format/length in the DEFINE DATA statement.

Example:

In this example, a user-defined variable of alphanumeric format and a length of 10 positions is defined with the name
#FIELD1.

 DEFINE DATA LOCAL
 1 #FIELD1 (A10)
 ...
 END-DEFINE

The following topics are covered below:

Names of User-Defined Variables
Format and Length of User-Defined Variables

Names of User-Defined Variables

The name of a user-defined variable can be 1 to 32 characters long.

Note:
You may use variable names of over 32 characters (for example, in complex applications where longer meaningful
variable names enhance the readability of programs); however, only the first 32 characters are significant and must
therefore be unique, the remaining characters will be ignored by Natural.

The name of a user-defined variable must not be a Natural reserved word.

Within one Natural program, you should not use the same name for a user-defined variable and a database field.

5Copyright Software AG 2001

User-Defined VariablesDefining Fields

The name of a user-defined variable can consist of the following characters:

Character Explanation

A to Z alphabetical characters

0 to 9 numeric characters

- hyphen

@ at sign

_ underline

/ slash

$ dollar sign

§ paragraph sign

& ampersand

hash / number sign

+ plus sign (only allowed as first character)

The first character of the name must be one of the following:

an upper-case alphabetical character

+
&

Note:
In this section, the names of all user-defined variables begin with a hash sign (#); this avoids any naming conflicts
with database fields or Natural reserved words.

If the first character is a "#", "+", or "&", the name must consist of at least one additional character.

"+" as the first character of a name is only allowed for application-independent variables (AIVs) and variables in a
global data area. Names of AIVs must begin with a "+".

"&" as the first character of a name is used in conjunction with dynamic source program modification (see the RUN
statement in the Natural Statements documentation) and when defining processing rules (see the map editor
description in your Natural User’s Guide).

Copyright Software AG 20016

Defining FieldsNames of User-Defined Variables

Format and Length of User-Defined Variables

Format and length of a user-defined variable are specified in parentheses after the variable name.

A user-defined variable can have one of the following formats:

A Alphanumeric

B Binary

C Attribute Control

D Date

F Floating Point

I Integer

L Logical

N Numeric unpacked

P Packed numeric

T Time

Information on possible lengths of user-defined variables is provided in the Natural Reference documentation,

Examples of User-Defined Variables:

 DEFINE DATA LOCAL
 #A1 (A10) /* Alphanumeric, 10 positions.
 #A2 (B4) /* Binary, 4 positions.
 #A3 (P4) /* Packed numeric, 4 positions and 1 sign position.
 #A4 (N7.2) /* Unpacked numeric,
 /* 7 positions before and 2 after decimal point.
 #A5 (N7.) /* Invalid definition!!!
 #A6 (P7.2) /* Packed numeric, 7 positions before and 2 after decimal point
 /* and 1 sign position.
 #INT1 (I1) /* Integer, 1 byte.
 #INT2 (I2) /* Integer, 2 bytes.
 #INT3 (I3) /* Invalid definition!!!
 #INT4 (I4) /* Integer, 4 bytes.
 #INT5 (I5) /* Invalid definition!!!
 #FLT4 (F4) /* Floating point, 4 bytes.
 #FLT8 (F8) /* Floating point, 8 bytes.
 #FLT2 (F2) /* Invalid definition!!!
 #DATE (D) /* Date (internal format/length P6).
 #TIME (T) /* Time (internal format/length P12).
 #SWITCH (L) /* Logical, 1 byte (TRUE or FALSE).
 ...
 END-DEFINE

Note:
When a user-defined variable of format P is output with a DISPLAY, WRITE, or INPUT statement, Natural
internally converts the format to N for the output.

7Copyright Software AG 2001

Format and Length of User-Defined VariablesDefining Fields

User-Defined Constants
Constants can be used throughout Natural programs. This section discusses the types of constants that are supported
and how they are used:

Numeric Constants
Alphanumeric Constants
Date and Time Constants
Hexadecimal Constants
Logical Constants
Floating Point Constants
Attribute Constants
Defining Named Constants

Numeric Constants

A numeric constant may contain 1 to 29 numeric digits.

A numeric constant used with a COMPUTE, MOVE, or arithmetic statement may contain a decimal point and sign
notation.

Examples:

 MOVE 3 TO #XYZ
 COMPUTE #PRICE = 23.34
 COMPUTE #XYZ = -103
 COMPUTE #A = #B * 6074

Alphanumeric Constants

An alphanumeric constant may contain 1 to 253 alphanumeric characters.

An alphanumeric constant must be enclosed in either apostrophes (’) or quotation marks (").

Examples:

 MOVE ’ABC’ TO #XYZ
 MOVE ’% INCREASE’ TO #TITLE
 DISPLAY "LAST-NAME" NAME

If you want an apostrophe to be part of an alphanumeric constant that is enclosed in apostrophes, you must write this
as two apostrophes or as a single quotation mark.

Copyright Software AG 20018

Defining FieldsUser-Defined Constants

If you want an apostrophe to be part of an alphanumeric constant that is enclosed in quotation marks, you write this
as a single apostrophe.

Example:

If you want the following to be output:

 HE SAID, ’HELLO’

you can use any of the following notations:

 WRITE ’HE SAID, ’’HELLO’’’
 WRITE ’HE SAID, "HELLO"’
 WRITE "HE SAID, ""HELLO"""
 WRITE "HE SAID, ’HELLO’"

An alphanumeric constant that is used to assign a value to a user-defined variable must not be split between
statement lines.

Alphanumeric constants may be concatenated to form a single value by use of a hyphen.

Examples:

 MOVE ’XXXXXX’ -
 ’YYYYYY’ TO #FIELD

 MOVE "ABC" - ’DEF’ TO #FIELD

In this way, alphanumeric constants can also be concatenated with hexadecimal constants.

9Copyright Software AG 2001

Alphanumeric ConstantsDefining Fields

Date and Time Constants

A date constant may be used in conjunction with a format D variable. Date constants may have the following
formats:

D’yyyy-mm-dd’ International date format

D’dd.mm.yyyy’ German date format

D’dd/mm/yyyy’ European date format

D’mm/dd/yyyy’ USA date format

where dd represent the number of the day, mm the number of the month and yyyy the year.

Example:

 DEFINE DATA LOCAL
 1 #DATE (D)
 END-DEFINE
 ...
 MOVE D’1997-08-11’ TO #DATE
 ...

The default date format is controlled by the profile parameter DTFORM as set by the Natural administrator.

A time constant may be used in conjunction with a format T variable. A time constant has the following format:

T’ hh:ii:ss’

where hh represents hours,ii minutes and ss seconds.

Example:

 DEFINE DATA LOCAL
 1 #TIME (T)
 END-DEFINE
 ...
 MOVE T’11:33:00’ TO #TIME

Copyright Software AG 200110

Defining FieldsDate and Time Constants

Hexadecimal Constants

A hexadecimal constant may be used to enter a value which cannot be entered as a standard keyboard character.

A hexadecimal constant is prefixed with an "H". The constant itself must be enclosed in apostrophes and may consist
of the hexadecimal characters 0 - 9, A - F. Two hexadecimal characters are required to represent one byte of data.

The hexadecimal representation of a character varies, depending on whether your computer uses an ASCII or
EBCDIC character set. Wenn you transfer hexadecimal constants to another computer, you may therefore have to
convert the characters.

ASCII Examples:

 H’313233’ (equivalent to the alphanumeric constant ’123’)
 H’414243’ (equivalent to the alphanumeric constant ’ABC’)

EBCDIC Examples:

 H’F1F2F3’ (equivalent to the alphanumeric constant ’123’)
 H’C1C2C3’ (equivalent to the alphanumeric constant ’ABC’)

Hexadecimal constants may be concatenated by using a hyphen between the constants.

ASCII Example:

 H’414243’ - H’444546’ (equivalent to ’ABCDEF’)

EBCDIC Example:

 H’C1C2C3’ - H’C4C5C6’ (equivalent to ’ABCDEF’)

Logical Constants

The logical constants "TRUE" and "FALSE" may be used to assign a logical value to a field defined with format L.

Example:

 DEFINE DATA LOCAL
 1 #FLAG (L)
 END-DEFINE
 ...
 MOVE TRUE TO #FLAG
 ...
 IF #FLAG ...
 statement ...
 MOVE FALSE TO #FLAG
 END-IF
 ...

Floating Point Constants

Floating point constants can be used with variables defined with format F.

Example:

11Copyright Software AG 2001

Hexadecimal ConstantsDefining Fields

 DEFINE DATA LOCAL
 1 #FLT1 (F4)
 END-DEFINE
 ...
 COMPUTE #FLT1 = -5.34E+2
 ...

Attribute Constants

Attribute constants can be used with variables defined with format C (control variables). This type of constant must
be enclosed within parentheses.

The following attributes may be used:

AD=D default CD=BL blue

AD=B blinking CD=GR green

AD=I intensified CD=NE neutral

AD=N non-display CD=PI pink

AD=V reverse video CD=RE red

AD=U underlined CD=TU turquoise

AD=C cursive/italic CD=YE yellow

AD=Y dynamic attribute

AD=P protected

Example:

 DEFINE DATA LOCAL
 1 #ATTR (C)
 1 #FIELD (A10)
 END-DEFINE
 ...
 MOVE (AD=I CD=BL) TO #ATTR
 ...
 INPUT #FIELD (CV=#ATTR)
 ...

Copyright Software AG 200112

Defining FieldsAttribute Constants

Defining Named Constants

If you need to use the same constant value several times in a program, you can reduce the maintenance effort by
defining a named constant: you define a field in the DEFINE DATA statement, assign a constant value to it, and use
the field name in the program instead of the constant value. Thus, when the value has to be changed, you only have
to change it once in the DEFINE DATA statement and not everywhere in the program where it occurs.

You specify the constant value in angle brackets with the keyword "CONSTANT" after the field definition in the
DEFINE DATA statement. If the value is alphanumeric, it must be enclosed in apostrophes.

Example:

 DEFINE DATA LOCAL
 1 #FIELDA (N3) CONSTANT <100>
 1 #FIELDB (A5) CONSTANT <’ABCDE’>
 END-DEFINE
 ...

During the execution of the program, the value of such a named constant cannot be modified.

13Copyright Software AG 2001

Defining Named ConstantsDefining Fields

Initial Values
You can assign an initial value to a user-defined variable. You specify the initial value in angle brackets with the
keyword "INIT" after the variable definition in the DEFINE DATA statement. If the initial value is alphanumeric, it
must be enclosed in apostrophes.

Example:

 DEFINE DATA LOCAL
 1 #FIELDA (N3) INIT <100>
 1 #FIELDB (A20) INIT <’ABC’>
 END-DEFINE
 ...

The initial value for a field may also be the value of a Natural system variable.

Example of System Variable as Initial Value:

 DEFINE DATA LOCAL
 1 #MYDATE (D) INIT <*DATX>
 END-DEFINE
 ...

As initial value, a variable can also be filled, entirely or partially, with a specific single character or string of
characters (only possible for alphanumeric variables).

With the option FULL LENGTH< character(s)> the entire field is filled with the specified character(s).

With the option LENGTH n <character(s)> the first n positions of the field are filled with the specified character(s).

Example of FULL LENGTH:

In this example, the entire field will be filled with asterisks.

 DEFINE DATA LOCAL
 1 #FIELD (A25) INIT FULL LENGTH <’*’>
 END-DEFINE
 ...

Example of LENGTH n:

In this example, the first 4 positions of the field will be filled with exclamation marks.

 DEFINE DATA LOCAL
 1 #FIELD (A25) INIT LENGTH 4 <’!’>
 END-DEFINE
 ...

Copyright Software AG 200114

Defining FieldsInitial Values

Default Initial Values

If you specify no initial value for a field, the field will be initialised with a default initial value (null value)
depending on its format:

Format Default Initial Value

B, F, I, N, P 0

A blank

L F(ALSE)

D D’ ’

T T’00:00:00’

C (AD=D)

The RESET Statement

The RESET statement is used to set the value of a field to a null value, or to a specific initial value.

RESET (without INITIAL) sets the value of each specified field to a null value.
RESET INITIAL sets each specified field to the initial value as defined for the field in the DEFINE DATA
statement.

Example:

 DEFINE DATA LOCAL
 1 #FIELDA (N3) INIT <100>
 1 #FIELDB (A20) INIT <’ABC’>
 1 #FIELDC (I4) INIT <5>
 END-DEFINE
 ...
 ...
 RESET #FIELDA /* resets field value to null
 ...
 RESET INITIAL #FIELDA #FIELDB #FIELDC /* resets field values to initial values
 ...

15Copyright Software AG 2001

Default Initial ValuesDefining Fields

Redefining Fields
Redefinition is used to change the format of a field, or to divide a single field into segments.

The REDEFINE option of the DEFINE DATA statement can be used to redefine a single field - either a user-defined
variable or a database field - as one or more new fields. A group can also be redefined.

Important:
Dynamic variables are not allowed.

The REDEFINE option redefines byte positions of a field from left to right, regardless of the format. Byte positions
must match between original field and redefined field(s).

The redefinition must be specified immediately after the definition of the original field.

In the following example, the database field BIRTH is redefined as three new user-defined variables:

 DEFINE DATA LOCAL
 01 EMPLOY-VIEW VIEW OF STAFFDDM
 02 NAME
 02 BIRTH
 02 REDEFINE BIRTH
 03 #BIRTH-YEAR (N4)
 03 #BIRTH-MONTH (N2)
 03 #BIRTH-DAY (N2)
 END-DEFINE
 ...

In the following example, the group #VAR2, which consists of two user-defined variables of format N and P
respectively, is redefined as a variable of format A:

 DEFINE DATA LOCAL
 01 #VAR1 (A15)
 01 #VAR2
 02 #VAR2A (N4.1)
 02 #VAR2B (P6.2)
 01 REDEFINE #VAR2
 02 #VAR2RD (A10)
 END-DEFINE
 ...

With the notation FILLER nX you can define n filler bytes - that is, segments which are not to be used - in the field
that is being redefined. (The definition of trailing filler bytes is optional.)

Copyright Software AG 200116

Defining FieldsRedefining Fields

In the following example, the user-defined variable #FIELD is redefined as three new user-defined variables, each of
format/length A2. The FILLER notations indicate that the 3rd and 4th and 7th to 10th bytes of the original field are
not be used.

 DEFINE DATA LOCAL
 1 #FIELD (A12)
 1 REDEFINE #FIELD
 2 #RFIELD1 (A2)
 2 FILLER 2X
 2 #RFIELD2 (A2)
 2 FILLER 4X
 2 #RFIELD3 (A2)
 END-DEFINE
 ...

The following program illustrates the use of a redefinition:

 ** Example Program ’DDATAX01’
 DEFINE DATA LOCAL
 01 VIEWEMP VIEW OF EMPLOYEES
 02 NAME
 02 FIRST-NAME
 02 SALARY (1:1)
 01 #PAY (N9)
 01 REDEFINE #PAY
 02 FILLER 3X
 02 #USD (N3)
 02 #000 (N3)
 END-DEFINE
 *
 READ (3) VIEWEMP BY NAME STARTING FROM ’JONES’
 MOVE SALARY (1) TO #PAY
 DISPLAY NAME FIRST-NAME #PAY #USD #000
 END-READ
 END

Note how #PAY and the fields resulting from its definition are displayed:

Page 1 99-08-08 17:48:59

 NAME FIRST-NAME #PAY #USD #000
 -------------------- -------------------- ---------- ---- ----

 JONES VIRGINIA 46000 46 0
 JONES MARSHA 50000 50 0
 JONES ROBERT 31000 31 0

17Copyright Software AG 2001

Redefining FieldsDefining Fields

Arrays
Natural supports the processing of arrays. Arrays are multi-dimensional tables, that is, two or more logically related
elements identified under a single name. Arrays can consist of single data elements of multiple dimensions or
hierarchical data structures which contain repetitive structures or individual elements. In Natural, an array can be
one-, two- or three-dimensional. It can be an independent variable, part of a larger data structure or part of a database
view.

The following topics are covered below:

Defining Arrays
Initial Values for Arrays
Assigning Initial Values to One-Dimensional Arrays
Assigning Initial Values to Two-Dimensional Arrays
A Three-Dimensional Array
Arrays as Part of a Larger Data Structure
Database Arrays
Using Arithmetic Expressions in Index Notation
Arithmetic Support for Arrays

Defining Arrays

To define an array variable, after the format and length you specify a slash followed by a so-called index notation,
that is, the number of occurrences of the array.

Important:
Dynamic variables are not allowed.

For example, the following array has three occurrences, each occurrence being of format/length A10:

 DEFINE DATA LOCAL
 1 #ARRAY (A10/1:3)
 END-DEFINE
 ...

To define a two-dimensional array, you specify an index notation for both dimensions:

 DEFINE DATA LOCAL
 1 #ARRAY (A10/1:3,1:4)
 END-DEFINE
 ...

A two-dimensional array can be visualized as a table. The array defined in the example above would be a table that
consists of 3 "rows" and 4 "columns":

Copyright Software AG 200118

Defining FieldsArrays

Initial Values for Arrays

To assign initial values to one or more occurrences of an array, you use an INIT specification, similar to that for
"ordinary" variables.

Assigning Initial Values to One-Dimensional Arrays

The following examples illustrate how initial values are assigned to a one-dimensional array.

To assign an initial value to one occurrence, you specify:

1 #ARRAY (A1/1:3) INIT (2) <’A’>

"A" is assigned to the second occurrence.

To assign the same initial value to all occurrences, you specify:

1 #ARRAY (A1/1:3) INIT ALL <’A’>

"A" is assigned to every occurrence. Alternatively, you could specify:

1 #ARRAY (A1/1:3) INIT (*) <’A’>

To assign the same initial value to a range of several occurrences, you specify:

1 #ARRAY (A1/1:3) INIT (2:3) <’A’>

"A" is assigned to the second to third occurrence.

To assign a different initial value to every occurrence, you specify:

1 #ARRAY (A1/1:3) INIT <’A’,’B’,’C’>

"A" is assigned to the first occurrence, "B" to the second, and "C" to the third.

To assign different initial values to some (but not all) occurrences, you specify:

1 #ARRAY (A1/1:3) INIT (1) <’A’> (3) <’C’>

"A" is assigned to the first occurrence, and "C" to the third; no value is assigned to the second occurrence.

Alternatively, you could specify:

1 #ARRAY (A1/1:3) INIT <’A’,,’C’>

If fewer initial values are specified than there are occurrences, the last occurrences remain empty:

1 #ARRAY (A1/1:3) INIT <’A’,’B’>

"A" is assigned to the first occurrence, and "B" to the second; no value is assigned to the third occurrence.

19Copyright Software AG 2001

Initial Values for ArraysDefining Fields

Assigning Initial Values to Two-Dimensional Arrays

The following examples illustrate how initial values are assigned to a two-dimensional array.

For the examples, let us assume a two-dimensional array with three occurrences in the first dimension ("rows") and
four occurrences in the second dimension ("columns"):

1 #ARRAY (A1/1:3,1:4)

Vertical: First Dimension (1:3), Horizontal: Second Dimension (1:4):

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3) (3,4)

The first set of examples illustrates how the same initial value is assigned to occurrences of a two-dimensional array;
the second set of examples illustrates how different initial values are assigned.

In the examples, please note in particular the usage of the notations "*" and "V". Both notations refer to all
occurrences of the dimension concerned: "*" indicates that all occurrences in that dimension are initialized with the
same value, while "V" indicates that all occurrences in that dimension are initialized with different values.

Assigning the Same Value
Assigning Different Values

Assigning the Same Value

To assign an initial value to one occurrence, you specify:

 A

To assign the same initial value to one occurrence in the second dimension - in all occurrences of the first
dimension - you specify:

 1 #ARRAY (A1/1:3,1:4) INIT (*,3) <’A’>

 A

 A

 A

Copyright Software AG 200120

Defining FieldsAssigning Initial Values to Two-Dimensional Arrays

To assign the same initial value to a range of occurrences in the first dimension - in all occurrences of the
second dimension - you specify:

 1 #ARRAY (A1/1:3,1:4) INIT (2:3,*) <’A’>

A A A A

A A A A

To assign the same initial value to a range of occurrences in each dimension, you specify:

 1 #ARRAY (A1/1:3,1:4) INIT (2:3,1:2) <’A’>

A A

A A

To assign the same initial value to all occurrences (in both dimensions), you specify:

 1 #ARRAY (A1/1:3,1:4) INIT ALL <’A’>

A A A A

A A A A

A A A A

Alternatively, you could specify:

 1 #ARRAY (A1/1:3,1:4) INIT (*,*) <’A’>

21Copyright Software AG 2001

Assigning Initial Values to Two-Dimensional ArraysDefining Fields

Assigning Different Values

 1 #ARRAY (A1/1:3,1:4) INIT (V,2) <’A’,’B’,’C’>

 A

 B

 C

 1 #ARRAY (A1/1:3,1:4) INIT (V,2:3) <’A’,’B’,’C’>

 A A

 B B

 C C

 1 #ARRAY (A1/1:3,1:4) INIT (V,*) <’A’,’B’,’C’>

A A A A

B B B B

C C C C

 1 #ARRAY (A1/1:3,1:4) INIT (V,*) <’A’,,’C’>

A A A A

C C C C

 1 #ARRAY (A1/1:3,1:4) INIT (V,*) <’A’,’B’>

A A A A

B B B B

 1 #ARRAY (A1/1:3,1:4) INIT (V,1) <’A’,’B’,’C’>
 (V,3) <’D’,’E’,’F’>

A D

B E

C F

Copyright Software AG 200122

Defining FieldsAssigning Initial Values to Two-Dimensional Arrays

 1 #ARRAY (A1/1:3,1:4) INIT (3,V) <’A’,’B’,’C’,’D’>

A B C D

 1 #ARRAY (A1/1:3,1:4) INIT (*,V) <’A’,’B’,’C’,’D’>

A B C D

A B C D

A B C D

 1 #ARRAY (A1/1:3,1:4) INIT (2,1) <’A’> (*,2) <’B’>
 (3,3) <’C’> (3,4) <’D’>

 B

A B

 B C D

 1 #ARRAY (A1/1:3,1:4) INIT (2,1) <’A’> (V,2) <’B’,C’,D’>
 (3,3) <’E’> (3,4) <’F’>

 B

A C

 D E F

23Copyright Software AG 2001

Assigning Initial Values to Two-Dimensional ArraysDefining Fields

A Three-Dimensional Array

A three-dimensional array could be visualized as follows:

The array illustrated here would be defined as follows (at the same time assigning an initial value to the highlighted
field in row 1, column 2, plane 2):

 DEFINE DATA LOCAL
 1 #ARRAY2
 2 #ROW (1:4)
 3 #COLUMN (1:3)
 4 #PLANE (1:3)
 5 #FIELD2 (P3) INIT (1,2,2) <100>
 END-DEFINE
 ...

If defined as a local data area in the data area editor, the same array would look as follows:

 I T L Name F Leng Index/Init/EM/Name/Comment
 - - - -------------------------------- - ---- ---------------------------------
 1 #ARRAY2
 2 #ROW (1:4)
 3 #COLUMN (1:3)
 4 #PLANE (1:3)
 I 5 #FIELD2 P 3

Copyright Software AG 200124

Defining FieldsA Three-Dimensional Array

Arrays as Part of a Larger Data Structure

The multiple dimensions of an array make it possible to define data structures analogous to COBOL or PL1
structures.

Example:

 DEFINE DATA LOCAL
 1 #AREA
 2 #FIELD1 (A10)
 2 #GROUP1 (1:10)
 3 #FIELD2 (P2)
 3 #FIELD3 (N1/1:4)
 END-DEFINE
 ...

In this example, the data area #AREA has a total size of:

10 + (10 * (2 + (1 * 4))) bytes = 70 bytes.

#FIELD1 is alphanumeric and 10 bytes long. #GROUP1 is the name of a sub-area within #AREA which consists of
2 fields and has 10 occurrences. #FIELD2 is packed numeric, length 2. #FIELD3 is the second field of #GROUP1
with four occurrences, and is numeric, length 1.

To reference a particular occurrence of #FIELD3, two indices are required: first, the occurrence of #GROUP1 must
be specified, and second, the particular occurrence of #FIELD3 must also be specified. For example, in an ADD
statement later in the same program, #FIELD3 would be referenced as follows:

 ADD 2 TO #FIELD3 (3,2)

25Copyright Software AG 2001

Arrays as Part of a Larger Data StructureDefining Fields

Database Arrays

Adabas supports array structures within the database in the form of multiple-value fields and periodic groups. These
are described in Database Access.

The following example shows a DEFINE DATA view containing a multiple-value field:

 DEFINE DATA LOCAL
 1 EMPLOYEES-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 ADDRESS-LINE (1:10) /* <--- MULTIPLE-VALUE FIELD
 END-DEFINE
 ...

The same view in a local data area would look as follows:

 I T L Name F Leng Index/Init/EM/Name/Comment
 - - - -------------------------------- - ---- ---------------------------------
 V 1 EMPLOYEES-VIEW EMPLOYEES
 2 NAME A 20
 M 2 ADDRESS-LINE A 20 (1:10) /* MU-FIELD

Using Arithmetic Expressions in Index Notation

A simple arithmetic expression may also be used to express a range of occurrences in an array.

Examples:

MA (I:I+5) Values of the field MA are referenced, beginning with value I and ending with value I+5.

MA (I+2:J-3) Values of the field MA are referenced, beginning with value I+2 and ending with value J-3.

Only the arithmetic operators "+" and "-" may be used in index expressions.

Arithmetic Support for Arrays

Arithmetic support for arrays include operations at array level, at row/column level, and at individual element level.
Only simple arithmetic expressions are permitted with array variables, with only one or two operands and an optional
third variable as the receiving field. Only the arithmetic operators "+" and "-" are allowed for expressions defining
index ranges.

Copyright Software AG 200126

Defining FieldsDatabase Arrays

Examples of Array Arithmetics:

The following examples assume the following field definitions:

 DEFINE DATA LOCAL
 01 #A (N5/1:10,1:10)
 01 #B (N5/1:10,1:10)
 01 #C (N5)
 END-DEFINE
 ...

1. ADD #A(*,*) TO #B(*,*)
The result operand, array #B, contains the addition, element by element, of the array #A and the original value
of array #B.

2. ADD 4 TO #A(*,2)
The second column of the array #A is replaced by its original value plus 4.

3. ADD 2 TO #A(2,*)
The second row of the array #A is replaced by its original value plus 2.

4. ADD #A(2,*) TO #B(4,*)
The value of the second row of array #A is added to the fourth row of array #B.

5. ADD #A(2,*) TO #B(*,2)
This is an illegal operation and will result in a syntax error. Rows may only be added to rows and columns to
columns.

6. ADD #A(2,*) TO #C
All values in the second row of the array #A are added to the scalar value #C.

7. ADD #A(2,5:7) TO #C
The fifth, sixth, and seventh column values of the second row of array #A are added to the scalar value #C.

27Copyright Software AG 2001

Arithmetic Support for ArraysDefining Fields

Data Blocks
To save data storage space, you can create a global data area with data blocks. Data blocks can overlay each other
during program execution, thereby saving storage space.

For example, given the following hierarchy, blocks B and C would be assigned the same storage area. Thus it would
not be possible for blocks B and C to be in use at the same time. Modifying block B would result in destroying the
contents of block C.

The following topics are covered below:

Defining Data Blocks
Block Hierarchies

Copyright Software AG 200128

Defining FieldsData Blocks

Defining Data Blocks

You define data blocks in the data area editor. You establish the block hierarchy by specifying which block is
subordinate to which: you do this by entering the name of the "parent" block in the comment field of the block
definition.

In the following example, SUB-BLOCKB and SUB-BLOCKC are subordinate to MASTER-BLOCKA;
SUB-BLOCKD is subordinate to SUB-BLOCKB.

The maximum number of block levels is 8 (including the master block).

Example:

Global Data Area G-BLOCK:

 I T L Name F Leng Index/Init/EM/Name/Comment
 - - - -------------------------------- - ---- ---------------------------------
 B MASTER-BLOCKA
 1 MB-DATA01 A 10
 B SUB-BLOCKB MASTER-BLOCKA
 1 SBB-DATA01 A 20
 B SUB-BLOCKC MASTER-BLOCKA
 1 SBC-DATA01 A 40
 B SUB-BLOCKD SUB-BLOCKB
 1 SBD-DATA01 A 40

To make the specific blocks available to a program, you use the following syntax in the DEFINE DATA statement:

Program 1:

 DEFINE DATA GLOBAL
 USING G-BLOCK
 WITH MASTER-BLOCKA
 END-DEFINE

Program 2:

 DEFINE DATA GLOBAL
 USING G-BLOCK
 WITH MASTER-BLOCKA.SUB-BLOCKB
 END-DEFINE

Program 3:

 DEFINE DATA GLOBAL
 USING G-BLOCK
 WITH MASTER-BLOCKA.SUB-BLOCKC
 END-DEFINE

Program 4:

 DEFINE DATA GLOBAL
 USING G-BLOCK
 WITH MASTER-BLOCKA.SUB-BLOCKB.SUB-BLOCKD
 END-DEFINE

With this structure, program 1 can share the data in MASTER-BLOCKA with program 2, program 3 or program 4.
However, programs 2 and 3 cannot share the data areas of SUB-BLOCKB and SUB-BLOCKC because these data
blocks are defined at the same level of the structure and thus occupy the same storage area.

29Copyright Software AG 2001

Defining Data BlocksDefining Fields

Block Hierarchies

Care needs to be taken when using data block hierarchies. Let us assume the following scenario with three programs
using a data block hierarchy:

Program 1:

 DEFINE DATA GLOBAL
 USING G-BLOCK
 WITH MASTER-BLOCKA.SUB-BLOCKB
 END-DEFINE
 *
 MOVE 1234 TO SBB-DATA01
 FETCH ’PROGRAM2’
 END

Program 2:

 DEFINE DATA GLOBAL
 USING G-BLOCK
 WITH MASTER-BLOCKA
 END-DEFINE
 *
 FETCH ’PROGRAM3’
 END

Program 3:

 DEFINE DATA GLOBAL
 USING G-BLOCK
 WITH MASTER-BLOCKA.SUB-BLOCKB
 END-DEFINE
 *
 WRITE SBB-DATA01
 END

Program 1 uses the global data area G-BLOCK with MASTER-BLOCKA and SUB-BLOCKB. The program
modifies a field in SUB-BLOCKB and FETCHes program 2 which specifies only MASTER-BLOCKA in its data
definition. Program 2 resets (deletes the contents of) SUB-BLOCKB. The reason is that a program on level 1 (for
example, a program called with a FETCH statement) resets any data blocks that are subordinate to the blocks it
defines in its own data definition. Program 2 now FETCHes program 3 which is to display the field modified in
program 1, but it returns an empty screen. For details on program levels, see Object Types.

Copyright Software AG 200130

Defining FieldsBlock Hierarchies

	Defining Fields
	DEFINE DATA Statement
	Structure of a DEFINE DATA Statement - Level Numbers
	Level Numbers in View Definitions
	Level Numbers in Field Groups
	Level Numbers in Redefinitions

	User-Defined Variables
	Names of User-Defined Variables
	Format and Length of User-Defined Variables

	User-Defined Constants
	Numeric Constants
	Alphanumeric Constants
	Date and Time Constants
	Hexadecimal Constants
	Logical Constants
	Floating Point Constants
	Attribute Constants
	Defining Named Constants

	Initial Values
	Default Initial Values
	The RESET Statement

	Redefining Fields
	Arrays
	Defining Arrays
	Initial Values for Arrays
	Assigning Initial Values to One-Dimensional Arrays
	Assigning Initial Values to Two-Dimensional Arrays
	Assigning the Same Value
	Assigning Different Values

	A Three-Dimensional Array
	Arrays as Part of a Larger Data Structure
	Database Arrays
	Using Arithmetic Expressions in Index Notation
	Arithmetic Support for Arrays

	Data Blocks
	Defining Data Blocks
	Block Hierarchies

